Positive solutions for three-point boundary value problems

A. Lepin and F. Sadyrbaev

Summary. We provide the conditions for existence of positive solutions for the boundary value problem $x^{\prime \prime}=f\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0, x(1)=\alpha x(\eta)$.

Key words: boundary value problems, positive solutions
AMS Subject Classification: 34 B 15

1 Introduction

In the work [1] the conditions for existence of a positive solution to the boundary value problem

$$
\begin{equation*}
x^{\prime \prime}+g(t) f\left(x, x^{\prime}\right)=0, \quad x^{\prime}(0)=0, x(1)=\alpha x(\eta), \quad \alpha, \eta \in(0,1) \tag{1}
\end{equation*}
$$

were obtained. Moreover, solvability of the problem

$$
\begin{align*}
& x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad t \in I:=[0,1], \\
& p x(0)+x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta), \quad \alpha \leq 0,0<\eta<1 \tag{2}
\end{align*}
$$

has been proved under the assumptions

$$
\begin{aligned}
& x^{\prime} g\left(t, x, x^{\prime}\right) \leq 0 \\
& \left|h\left(t, x, x^{\prime}\right)\right| \leq a(t)|x|+b(t)\left|x^{\prime}\right|+u(t)|x|^{r}+v(t)\left|x^{\prime}\right|^{k}+e(t), \quad 0 \leq r, k<1, \\
& \left(|p|+a_{1}\right) e^{b_{1}}<1, \quad a_{1}=\|a\|_{1}=\int_{0}^{1}|a(t)| d t, \quad b_{1}=\|b\|_{1} .
\end{aligned}
$$

Similar boundary value problems were considered in the works [2] - [11].
Our purpose in this paper is twofold. First, we prove the existence of a positive solution for more general problem than the problem (1). Second, we will show that the problem (2) is solvable also if $\left(p_{+}+a_{1}\right) e^{b_{1}}<1$, where $p_{+}=\max \{0, p\}$. Examples show that these conditions cannot be improved.

2 Existence of positive solutions

Consider the problem

$$
\begin{align*}
& x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad p x(0)+x^{\prime}(0)=0, x(1)=\alpha x(\eta), \\
& p \in C([0,+\infty), \mathbb{R}), \quad \alpha, \eta \in(0,1) \tag{3}
\end{align*}
$$

where $f: I \times[0,+\infty) \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory conditions, that is, (i) $f(\cdot, x, y)$ is measurable in I for fixed $x, y \in \mathbb{R}$; (ii) $f(t, \cdot, \cdot)$ is continuous in \mathbb{R}^{2} for a.e. $t \in I$; (iii) for any compact set $P \subset \mathbb{R}^{2}$ there exists a function $g \in L_{1}(I, \mathbb{R})$ such that for any $(t, x, y) \in I \times P$ the inequality $|f(t, x, y)| \leq g(t)$ holds.

Suppose that the following conditions hold:
(1) There exist functions $a, b, c, d \in L_{1}(I,[0,+\infty))$ such that for any $\varepsilon>0$ and some $e \in L_{1}(I,[0,+\infty))$ the relation

$$
\begin{aligned}
& f\left(t, x, x^{\prime}\right) \geq-(a(t)+\varepsilon c(t)) x+(b(t)+\varepsilon d(t)) x^{\prime}-e(t), \\
& \left(t, x, x^{\prime}\right) \in I \times[0,+\infty) \times(-\infty, 0]
\end{aligned}
$$

(2) For any $\tau \in(0,1]$ boundedness of a solution $x_{N}:[0, \tau) \rightarrow \mathbb{R}$ to the Cauchy problem

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad x(0)=N, x^{\prime}(0)=-p(N), N>0 \tag{4}
\end{equation*}
$$

implies boundedness of the derivative $x_{N}^{\prime}(t)$;
(3) There exists $\delta>0$ such that

$$
f_{*}(t)=\max \left\{f\left(t, x, x^{\prime}\right): 0 \leq x \leq \delta,-\delta \leq x^{\prime} \leq \delta\right\} \leq 0, \quad t \in I,\left\|f_{*}\right\|_{1}>0
$$

(4) $p(0) \geq 0$;
(5) There exist $p_{+}, q \in[0,+\infty)$ such that $p(x) \leq p_{+} x+q, x \geq 0$.

Remark: The condition 2 holds if for $\left(t, x, x^{\prime}\right) \in I \times[0,+\infty) \times[0,-\infty)$

$$
f\left(t, x, x^{\prime}\right) \leq(a(t)+\varepsilon c(t)) x+(b(t)+\varepsilon d(t)) x^{\prime}+e(t) .
$$

Lemma 2.1 Let $A, B, E \in L_{1}(I,[0,+\infty)), N>0$ and

$$
f\left(t, x, x^{\prime}\right) \geq-A(t) x+B(t) x^{\prime}-E(t), \quad\left(t, x, x^{\prime}\right) \in I \times[0,+\infty) \times(-\infty, 0] .
$$

If the condition

$$
\left(p_{+}+A_{1}+\frac{E_{1}+q}{N}\right) e^{B_{1}}<1
$$

holds, where $A_{1}=\|A\|_{1}, B_{1}=\|B\|_{1}, E_{1}=\|E\|_{1}$, then a solution $x_{N}: I \rightarrow[0,+\infty)$ to the Cauchy problem

$$
x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad x(0)=N, x^{\prime}(0)=-p(N)
$$

satisfies the estimates

$$
\begin{gather*}
x_{N}^{\prime} \geq-\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}, \tag{5}\\
x_{N}(1) \geq N_{m}-\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}, \tag{6}\\
\frac{x_{N}(1)}{x_{N}(\eta)} \geq \frac{1-\left(p_{+}+A_{1}+\frac{E_{1}+q}{N_{m}}\right) e^{B_{1}}}{1-\eta\left(p_{+}+A_{1}+\frac{E_{1}+q}{N_{m}}\right) e^{B_{1}}}, \tag{7}
\end{gather*}
$$

where $N_{m}=\max \left\{x_{N}(t): t \in I\right\}$.

Proof. Consider the case $x_{N}^{\prime} \leq 0$. Then $N_{m}=N$,

$$
x_{N}^{\prime \prime}=f\left(t, x_{N}, x_{N}^{\prime}\right) \geq-A(t) x_{N}+B(t) x_{N}^{\prime}-E(t) \geq B(t) x_{N}^{\prime}-A(t) N-E(t)
$$

and $x_{N}^{\prime}(0)=-p(N) \geq-p_{+} N-q$. Let y_{N} be a solution to the Cauchy problem

$$
\begin{equation*}
y^{\prime}=B(t) y-A(t) N-E(t), \quad y(0)=-p_{+} N-q . \tag{8}
\end{equation*}
$$

Comparison theorems for the first order differential inequalities imply that $x_{N}^{\prime} \geq y_{N}$. A solution to the Cauchy problem (8) has the form

$$
\begin{align*}
y_{N}(t)= & -\left(p_{+} N+q\right) \exp \left(\int_{0}^{t} B(s) d s\right) \\
& -\int_{0}^{t}(A(s) N+E(s)) \exp \left(\int_{s}^{t} B(\xi) d \xi\right) d s \tag{9}
\end{align*}
$$

It follows from (9) that

$$
\begin{equation*}
x_{N}^{\prime} \geq y_{N} \geq-\left(p_{+} N+q+N A_{1}+E_{1}\right) e^{B_{1}} . \tag{10}
\end{equation*}
$$

Consider the case $x_{N} \leq N$. Let $T=\left\{t \in(0,1): x_{N}^{\prime}(t)<0\right\}$. It is clear that T is an open set which can be represented as a union of disjointed open intervals. Denote a sample interval $\left(t_{1}, t_{2}\right)$. In case of $t_{1}=0$ the estimate $x_{N}^{\prime}(t) \geq y_{N}(t), t \in\left[t_{1}, t_{2}\right]$ can be obtained as above. If $t_{1}>0$, then $x_{N}^{\prime}\left(t_{1}\right)=0$ and the estimate $x_{N}^{\prime}(t) \geq y_{N}(t), t \in\left[t_{1}, t_{2}\right]$ can be obtained also. The inequality $x_{N}^{\prime}(t) \geq y_{N}(t)$ is evident if $x_{n}^{\prime}(t) \geq 0$. Now (10) implies (5) which, in turn, implies (6).

Consider the case $N_{m}>N$. As before one obtains the relations

$$
\begin{gathered}
x_{N}^{\prime} \geq-\left(N_{m} A_{1}+E_{1}\right) e^{B_{1}} \geq-\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}, \\
x_{N}(1) \geq N_{m}-(1-\tau)\left(N_{m} A_{1}+E_{1}\right) e^{B_{1}} \geq N_{m}-\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}},
\end{gathered}
$$

where $N_{m}=x_{N}(\tau)$. The estimate (7) follows from

$$
\begin{aligned}
\frac{x_{N}(1)}{x_{N}(\eta)} & \geq \frac{x_{N}(1)}{x_{N}(1)+(1-\eta)\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}} \\
& =1-\frac{(1-\eta)\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}}{x_{N}(1)+(1-\eta)\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}} \\
& \geq 1-\frac{(1-\eta)\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}}{N_{m}-\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}+(1-\eta)\left(N_{m} p_{+}+N_{m} A_{1}+E_{1}+q\right) e^{B_{1}}} \\
& =\frac{1-\left(p_{+}+A_{1}+\frac{E_{1}+q}{N_{m}}\right) e^{B_{1}}}{1-\eta\left(p_{+}+A_{1}+\frac{E_{1}+q}{N_{m}}\right) e^{B_{1}}}
\end{aligned}
$$

Theorem 2.1 If $\left(p_{+}+a_{1}\right) e^{b_{1}}<1$, then there exists a positive solution to the problem (3) for

$$
\begin{equation*}
\alpha \in\left(0, \frac{1-\left(p_{+}+a_{1}\right) e^{b_{1}}}{1-\eta\left(p_{+}+a_{1}\right) e^{b_{1}}}\right) . \tag{11}
\end{equation*}
$$

Proof. Let us fix η and α, which satisfy the condition (11). Define f for $x<0$ as

$$
f\left(t, x, x^{\prime}\right)=f\left(t, 0, x^{\prime}\right), \quad\left(t, x, x^{\prime}\right) \in I \times(-\infty, 0) \times \mathbb{R}
$$

Consider a solution of the Cauchy problem (4) for sufficiently small $N=N_{1}$. It follows from the conditions 3 and 4 that the graph of $x_{N_{1}}$ crosses the t-axis and decreases for t such that $x_{N_{1}}<0$. Choose $\varepsilon>0$ so that the inequalities

$$
\begin{align*}
& \left(p_{+}+a_{1}+\varepsilon c_{1}\right) e^{b_{1}+\varepsilon d_{1}}<1, \quad c_{1}=\|c\|_{1}, d_{1}=\|d\|_{1} \\
& \alpha<\left(1-\left(p_{+}+a_{1}+\varepsilon c_{1}\right) e^{b_{1}+\varepsilon c_{1}}\right) /\left(1-\eta\left(p_{+}+a_{1}+\varepsilon c_{1}\right) e^{b_{1}+\varepsilon c_{1}}\right) \tag{12}
\end{align*}
$$

are satisfied. Using the condition 1 for a given ε find $e(t)$ and choose $N_{2}>0$ so that the the inequalities

$$
\begin{aligned}
& \left(p_{+}+a_{1}+\varepsilon c_{1}+\frac{e_{1}+q}{N_{2}}\right) e^{b_{1}+\varepsilon d_{1}}<1, \quad e_{1}=\|e\|_{1}, \\
& \alpha<\left(1-\left(p_{+}+a_{1}+\varepsilon c_{1}+\frac{e_{1}+q}{N_{2}}\right) e^{b_{1}+\varepsilon c_{1}}\right) /\left(1-\eta\left(p_{+}+a_{1}+\varepsilon c_{1}+\frac{e_{1}+q}{N_{2}}\right) e^{b_{1}+\varepsilon c_{1}}\right)=\alpha_{N_{2}} .
\end{aligned}
$$

are satisfied. We wish now to show that the boundary value problem

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad p(x(0))+x^{\prime}(0)=0, x(1)=N_{2} \tag{13}
\end{equation*}
$$

is solvable. For this, let us consider the modified equation

$$
\begin{equation*}
x^{\prime \prime}=f_{L M}\left(t, x, x^{\prime}\right):=f\left(t, \delta(-L, x, L), \delta\left(-M, x^{\prime}, M\right)\right), \tag{14}
\end{equation*}
$$

where $L, M \in(0,+\infty)$, together with the boundary conditions in (13). The function $\delta(u, v, w)=u$ for $v<u, \delta=v$ for $u \leq v \leq w$, and $\delta=w$ for $v>w$. Notice that the conditions 1 to 3 are satisfied also for $f_{L M}$. Let $N_{3} \in\left(N_{2},+\infty\right)$ be such that

$$
\begin{equation*}
N_{3}-N_{3}\left(p_{+}+a_{1}+\varepsilon c_{1}+\frac{e_{1}+q}{N_{3}}\right) e^{b_{1}+\varepsilon}>N_{2} . \tag{15}
\end{equation*}
$$

Lemma 1 applied to the problem

$$
\begin{equation*}
x^{\prime \prime}=f_{L M}\left(t, x, x^{\prime}\right), \quad x(0)=N_{3}, x^{\prime}(0)=-p\left(N_{3}\right) \tag{16}
\end{equation*}
$$

yields the estimate for the solution

$$
\begin{align*}
x_{L M N_{3}}(1) & \geq N_{m}-\left(N_{m} p_{+}+N_{m} a_{1}+N_{m} \varepsilon c_{1}+e_{1}+q\right) e^{b_{1}+\varepsilon d_{1}} \\
& \geq N_{3}-\left(N_{3} p_{+}+N_{3} a_{1}+N_{3} \varepsilon c_{1}+e_{1}+q\right) e^{b_{1}+\varepsilon d_{1}}>N_{2} . \tag{17}
\end{align*}
$$

A set of solutions to the problem

$$
\begin{equation*}
x^{\prime \prime}=f_{L M}\left(t, x, x^{\prime}\right), \quad x(0)=N, x^{\prime}(0)=-p(N), \quad N \in\left[N_{1}, N_{3}\right] \tag{18}
\end{equation*}
$$

is connected. Therefore there exist $N_{0}, N_{4} \in\left[N_{1}, N_{3}\right]$ and solutions $x_{L M N_{0}}, x_{L M N_{4}}$ of the problem (18), where $N=N_{0}$ and $N=N_{4}$ respectively such that $x_{L M N_{0}}(1)=0$ and $x_{L M N_{4}}(1)=N_{2}$. Note that $x_{L M N_{0}} \geq 0$ and $x_{L M N_{4}}>0$. Lemma 1 implies the existence of $L_{1}>0$ such that for any solution $x_{L M N}$ of the Cauchy problem (8) from the estimate $0 \leq$
$x_{L M N}(1) \leq N_{2}$ follows $x_{L M N}(1) \leq L_{1}$. Let $0 \leq x_{L M N}(1) \leq N_{2}$ hold. Then $x_{M N}=x_{L_{1} M N}$ is a solution of the Cauchy problem

$$
\begin{equation*}
x^{\prime \prime}=f_{M}\left(t, x, x^{\prime}\right):=f\left(t, x, \delta\left(-M, x^{\prime}, M\right)\right), \quad x(0)=N, \quad x^{\prime}(0)=-p(N) . \tag{19}
\end{equation*}
$$

Let us show that there exists $M_{*}>0$ such that the estimate $0 \leq x_{M N}(1) \leq N_{2}$ implies $\left|x_{M N}^{\prime}\right|<M_{*}$. Suppose the contrary is true. Set $M_{0}=\max \left\{|p(N)|: N \in\left[N_{1}, N_{3}\right]\right\}$ and let a sequence $M_{n} \in\left(M_{0},+\infty\right), n=5,6, \ldots$ tend to $+\infty$. Then there exists a sequence of solutions $x_{n}=x_{M_{n} N_{n}}$ and $t_{n} \in(0,1]$ such that

$$
0 \leq x_{n}(1) \leq N_{2}, \quad\left|x_{n}^{\prime}(t)\right|<M_{n}, t \in\left[0, t_{n}\right), \quad\left|x_{n}^{\prime}\left(t_{n}\right)\right|=M_{n} .
$$

A subsequence exists which converges to a solution of the Cauchy problem (4), which does not satisfy the condition 2. Thus the estimate $\left|x_{M N}^{\prime}\right|<M_{*}$ is valid. Therefore $x_{N_{0}}=x_{M_{*} N_{0}}, x_{N_{4}}=x_{M_{*} N_{4}}$ are solutions of the boundary value problem (4) for $N=N_{0}$ and $N=N_{4}$ respectively and satisfy the conditions $x_{N_{0}}(1)=0, x_{N_{4}}(1)=N_{2}$. Notice that $x_{N_{0}}(1) / x_{N_{0}}(\eta)=0$ and $x_{N_{4}}(1) / x_{N_{4}}(\eta) \geq \alpha_{N_{2}}>\alpha$ by virtue of Lemma 1 .

Let us made an extra assumption that solutions of the Cauchy problems (4) are defined uniquely. Let N_{4} be a minimal value of $N \in\left[N_{1},+\infty\right)$ for which $x_{N}(1)=N_{2}$ and let N_{0} be a maximal value of $N \in\left[N_{1}, N_{4}\right]$ for which $x_{N_{0}}(1)=0$. A set of solutions of the Cauchy problems (4) for $N \in\left[N_{0}, N_{4}\right]$ is connected. Hence there exists $N_{\alpha} \in\left[N_{0}, N_{4}\right]$ such that $x_{N_{\alpha}}(1) / x_{N_{\alpha}}(\eta)=\alpha$. Evidently $x_{N_{\alpha}}$ solves the BVP (3). It follows from the condition 3 that $x_{N_{\alpha}}>0$.

The extra assumption above will now be eliminated by approximation arguments. We do not assume now that solutions of the Cauchy problems (4) are defined uniquely. Let $t \in I$ be fixed. Consider the mesh

$$
x_{n i}=i \delta 2^{-n}, \quad x_{n j}^{\prime}=j \delta 2^{-n}, \quad i, j=\ldots,-1,0,1, \ldots, \quad n=1,2, \ldots
$$

in the $\left(x, x^{\prime}\right)$-plane. Let n be fixed. Substitute the function $f(t, \cdot, \cdot)$ on the triangle with vortices $\left(x_{n i}, x_{n j}^{\prime}\right),\left(x_{n i+1}, x_{n j}^{\prime}\right)$ and $\left(x_{n i+1}, x_{n j+1}^{\prime}\right)$ by a plane which coincides with $f(t, \cdot, \cdot)$ at these points. Similarly we approximate the function f on the triangle with vortices $\left(x_{n i}, x_{n j}^{\prime}\right),\left(x_{n i}, x_{n j+1}^{\prime}\right)$ and $\left(x_{n i+1}, x_{n j+1}^{\prime}\right)$. Denote the approximating function by $f_{n}\left(t, x, x^{\prime}\right)$. The function f_{n} satisfies the generalized Lipschitz condition and meets the hypotheses 1 and 3. It follows from the above arguments that the boundary value problems

$$
\begin{gathered}
x^{\prime \prime}=f_{n L M}\left(t, x, x^{\prime}\right)=f_{n}\left(t, \delta(-L, x, L), \delta\left(-M, x^{\prime} M\right)\right), \\
p(x(0))+x^{\prime}(0)=0, x(1)=\alpha x(\eta)
\end{gathered}
$$

have solutions $x_{n L M}$ such that $0<x_{n L M}(1)<N_{2}$ and $0<x_{n L M}(1)<L_{1}$. Hence the function $x_{n M}=x_{n L_{1} M}$ solves the boundary value problem

$$
\begin{gathered}
x^{\prime \prime}=f_{n M}\left(t, x, x^{\prime}\right)=f_{n}\left(t, x, \delta\left(-M, x^{\prime} M\right)\right), \\
p(x(0))+x^{\prime}(0)=0, x(1)=\alpha x(\eta) .
\end{gathered}
$$

If a constant $M_{*}>0$ exists such that the estimates $\left|x_{k}^{\prime}\right|<M_{*}, \quad k=1,2, \ldots$ hold for the sequence $x_{k}=x_{n_{k} M_{*}}, \quad k=1,2, \ldots$, then a subsequence can be extracted from the sequence $\left\{x_{k}\right\}$, which converges to a solution of the boundary value problem (3). Suppose the contrary is true. Then as above one can find $t_{k} \in(0,1]$ and a sequence of solutions $x_{k}=x_{n_{k} M_{k}}$ such that $\left|x_{k}^{\prime}(t)\right|<M_{k}, \quad t \in\left[0, t_{k}\right)$ and $\left|x_{k}^{\prime}\left(t_{k}\right)\right|=M_{k}$. This sequence contains a subsequence which converges to a solution of the Cauchy problem (4), which does not meet the condition 2.

Remark 2. It follows from the proofs of Lemma 1 and Theorem 1 that q may be a function $q:[0,+\infty) \rightarrow[0,+\infty)$, satisfying the condition $\lim _{x \rightarrow+\infty} \frac{q(x)}{x}=0$.

The result below can be proved analogously to Theorem 1.
Theorem 2.2 If $\left(p_{+}+a_{1}\right) e^{b_{1}}<1$ and either $a_{1}>0$ or $a_{1}=0, b_{1}>0$ and $p_{+}>0$, then there exists a positive solution to the problem (3) for

$$
\begin{equation*}
\alpha \in\left(0, \frac{1-\left(p_{+}+a_{1}\right) e^{b_{1}}}{1-\eta\left(p_{+}+a_{1}\right) e^{b_{1}}}\right) . \tag{20}
\end{equation*}
$$

Example 1. Consider the problem

$$
\begin{equation*}
x^{\prime \prime}=f_{\sigma}\left(t, x, x^{\prime}\right), \quad p_{+} x(0)+\sigma+x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta), \tag{21}
\end{equation*}
$$

where $\sigma \in(0,1 / 3)$ and

$$
\begin{aligned}
& f_{\sigma}\left(t, x, x^{\prime}\right)=-a_{1} \sigma^{-1} x, \quad\left(t, x, x^{\prime}\right) \in[0, \sigma) \times[0,+\infty) \times R, \\
& f_{\sigma}\left(t, x, x^{\prime}\right)=\min \left\{0, b_{1} \sigma^{-1} x^{\prime}\right\}, \quad\left(t, x, x^{\prime}\right) \in[\sigma, 2 \sigma) \times[0,+\infty) \times R, \\
& f_{\sigma}\left(t, x, x^{\prime}\right)=-1, \quad\left(t, x, x^{\prime}\right) \in[2 \sigma, 1] \times[0,+\infty) \times R .
\end{aligned}
$$

In case of $\left(p_{+}+a_{1}\right) e^{b_{1}}<1$ the BVP (21) shows that the conditions (11) and (20) are sharp for fixed η and sufficiently small σ.

If $\left(p_{+}+a_{1}\right) e^{b_{1}}=1$ and $a_{1}=b_{1}=0$, then the BVP (21) has not a solution.
If $\left(p_{+}+a_{1}\right) e^{b_{1}}=1$ and $a_{1}+b_{1}>0$, then the BVP (21) has a positive solution only for $\alpha \in\left(0, \alpha_{\sigma}\right), \alpha_{\sigma}>0$ and $\lim _{\sigma \rightarrow 0} \alpha_{\sigma}=0$.

If $\left(p_{+}+a_{1}\right) e^{b_{1}}>1$, then the BVP (21) has not a solution for sufficiently small σ.

References

[1] W. Feng, Solutions and positive solutions for some three-point boundary value problems. Dynamical systems and differential equations, AIMS, 2003, 263-272.
[2] W. Feng, J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl., 212 (1997), 467-480.
[3] W. Feng, J.R.L. Webb, Solvability of three-point boundary value problems at resonance. Nonlinear Anal. TMA 30 (1997), 3227-3238.
[4] C.R. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl., 168 (1992), 540-551.
[5] C.R. Gupta, A note on a second order three-point boundary value problem. J. Math. Anal. Appl., 186 (1994), 277-281.
[6] C.R. Gupta, A second order m-point boundary value problem at resonance. Nonlinear Anal. TMA 24 (1995), 1483-1489.
[7] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, On an m-point boundary-value for second-order differential equations. Nonlinear Anal. TMA 23 (1994), 1427-1436.
[8] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, Solvability of m-point boundary value problem for second order ordinary differential equations. J. Math. Anal. Appl., 189 (1995), 575-584.
[9] A.Ja. Lepin. On three-point boundary value problems. This volume, 94-103.
[10] R. Ma, Existence theorems for a second order three-point boundary value problem. J. Math. Anal. Appl., 212 (1997), 430-442.
[11] J.R.L. Webb, Positive solutions of some three point boundary value problems via fixed point theory. Nonlinear Anal., 46 (2001), 4319-4332.

А. Лепин, Ф. Садырбаев. Положительные решения трехточечной краевой

 задачи.Аннотация. Указаны условия существования положительного решения краевой задачи $x^{\prime \prime}=f\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0, x(1)=\alpha x(\eta)$.

УДК 517.927

A. Lepins, F. Sadirbajevs. Par vienu trispunktu robez̆problēmu.

Anotācija. Tiek doti pozitīva atrisinājuma eksistences nosacījumi robežproblēmai $x^{\prime \prime}=f\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0, x(1)=\alpha x(\eta)$.

Institute of Mathematics
Received 04.02.2008 and Computer Science, University of Latvia Riga, Rainis blvd 29

