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Positive solutions for three-point boundary value
problems

A. Lepin and F. Sadyrbaev

Summary. We provide the conditions for existence of positive solutions for the bound-
ary value problem x′′ = f(t, x, x′), p x(0) + x′(0) = 0, x(1) = αx(η).
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1 Introduction

In the work [1] the conditions for existence of a positive solution to the boundary value
problem

x′′ + g(t)f(x, x′) = 0, x′(0) = 0, x(1) = αx(η), α, η ∈ (0, 1) (1)

were obtained. Moreover, solvability of the problem

x′′ = g(t, x, x′) + h(t, x, x′), t ∈ I := [0, 1],
px(0) + x′(0) = 0, x(1) = αx(η), α ≤ 0, 0 < η < 1

(2)

has been proved under the assumptions

x′g(t, x, x′) ≤ 0,
|h(t, x, x′)| ≤ a(t)|x|+ b(t)|x′|+ u(t)|x|r + v(t)|x′|k + e(t), 0 ≤ r, k < 1,

(|p|+ a1)e
b1 < 1, a1 = ‖a‖1 =

∫ 1

0
|a(t)| dt, b1 = ‖b‖1.

Similar boundary value problems were considered in the works [2] - [11].
Our purpose in this paper is twofold. First, we prove the existence of a positive solution

for more general problem than the problem (1). Second, we will show that the problem
(2) is solvable also if (p+ + a1)e

b1 < 1, where p+ = max{0, p}. Examples show that these
conditions cannot be improved.
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2 Existence of positive solutions

Consider the problem

x′′ = f(t, x, x′), px(0) + x′(0) = 0, x(1) = αx(η),
p ∈ C([0, +∞),R), α, η ∈ (0, 1).

(3)

where f : I× [0, +∞)×R→ R satisfies the Carathéodory conditions, that is, (i) f(·, x, y)
is measurable in I for fixed x, y ∈ R; (ii) f(t, ·, ·) is continuous in R2 for a.e. t ∈ I;
(iii) for any compact set P ⊂ R2 there exists a function g ∈ L1(I,R) such that for any
(t, x, y) ∈ I × P the inequality |f(t, x, y)| ≤ g(t) holds.

Suppose that the following conditions hold:
(1) There exist functions a, b, c, d ∈ L1(I, [0, +∞)) such that for any ε > 0 and some
e ∈ L1(I, [0, +∞)) the relation

f(t, x, x′) ≥ −(a(t) + εc(t))x + (b(t) + εd(t))x′ − e(t),
(t, x, x′) ∈ I × [0, +∞)× (−∞, 0];

(2) For any τ ∈ (0, 1] boundedness of a solution xN : [0, τ) → R to the Cauchy problem

x′′ = f(t, x, x′), x(0) = N, x′(0) = −p(N), N > 0 (4)

implies boundedness of the derivative x′N(t);
(3) There exists δ > 0 such that

f∗(t) = max{f(t, x, x′) : 0 ≤ x ≤ δ, −δ ≤ x′ ≤ δ} ≤ 0, t ∈ I, ‖f∗‖1 > 0;

(4) p(0) ≥ 0;
(5) There exist p+, q ∈ [0, +∞) such that p(x) ≤ p+x + q, x ≥ 0.

Remark: The condition 2 holds if for (t, x, x′) ∈ I × [0, +∞)× [0,−∞)

f(t, x, x′) ≤ (a(t) + εc(t))x + (b(t) + εd(t))x′ + e(t).

Lemma 2.1 Let A,B, E ∈ L1(I, [0, +∞)), N > 0 and

f(t, x, x′) ≥ −A(t)x + B(t)x′ − E(t), (t, x, x′) ∈ I × [0, +∞)× (−∞, 0].

If the condition

(p+ + A1 +
E1 + q

N
)eB1 < 1

holds, where A1 = ‖A‖1, B1 = ‖B‖1, E1 = ‖E‖1, then a solution xN : I → [0, +∞) to
the Cauchy problem

x′′ = f(t, x, x′), x(0) = N, x′(0) = −p(N)

satisfies the estimates

x′N ≥ −(Nmp+ + NmA1 + E1 + q)eB1 , (5)

xN(1) ≥ Nm − (Nmp+ + NmA1 + E1 + q)eB1 , (6)

xN(1)

xN(η)
≥ 1− (p+ + A1 + E1+q

Nm
)eB1

1− η(p+ + A1 + E1+q
Nm

)eB1
, (7)

where Nm = max{xN(t) : t ∈ I}.
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Proof. Consider the case x′N ≤ 0. Then Nm = N,

x′′N = f(t, xN , x′N) ≥ −A(t)xN + B(t)x′N − E(t) ≥ B(t)x′N − A(t)N − E(t)

and x′N(0) = −p(N) ≥ −p+N − q. Let yN be a solution to the Cauchy problem

y′ = B(t)y − A(t)N − E(t), y(0) = −p+N − q. (8)

Comparison theorems for the first order differential inequalities imply that x′N ≥ yN . A
solution to the Cauchy problem (8) has the form

yN(t) = −(p+N + q) exp
(∫ t

0
B(s) ds

)

− ∫ t

0
(A(s)N + E(s)) exp

(∫ t

s
B(ξ) dξ

)
ds.

(9)

It follows from (9) that

x′N ≥ yN ≥ −(p+N + q + NA1 + E1)e
B1 . (10)

Consider the case xN ≤ N. Let T = {t ∈ (0, 1) : x′N(t) < 0}. It is clear that T is an open
set which can be represented as a union of disjointed open intervals. Denote a sample
interval (t1, t2). In case of t1 = 0 the estimate x′N(t) ≥ yN(t), t ∈ [t1, t2] can be obtained
as above. If t1 > 0, then x′N(t1) = 0 and the estimate x′N(t) ≥ yN(t), t ∈ [t1, t2] can be
obtained also. The inequality x′N(t) ≥ yN(t) is evident if x′n(t) ≥ 0. Now (10) implies (5)
which, in turn, implies (6).

Consider the case Nm > N. As before one obtains the relations

x′N ≥ −(NmA1 + E1)e
B1 ≥ −(Nmp+ + NmA1 + E1 + q)eB1 ,

xN(1) ≥ Nm − (1− τ)(NmA1 + E1)e
B1 ≥ Nm − (Nmp+ + NmA1 + E1 + q)eB1 ,

where Nm = xN(τ). The estimate (7) follows from

xN(1)

xN(η)
≥ xN(1)

xN(1) + (1− η)(Nmp+ + NmA1 + E1 + q)eB1

= 1− (1− η)(Nmp+ + NmA1 + E1 + q)eB1

xN(1) + (1− η)(Nmp+ + NmA1 + E1 + q)eB1

≥ 1− (1− η)(Nmp+ + NmA1 + E1 + q)eB1

Nm − (Nmp+ + NmA1 + E1 + q)eB1 + (1− η)(Nmp+ + NmA1 + E1 + q)eB1

=
1− (p+ + A1 + E1+q

Nm
)eB1

1− η(p+ + A1 + E1+q
Nm

)eB1
.

Theorem 2.1 If (p+ + a1)e
b1 < 1, then there exists a positive solution to the problem (3)

for

α ∈
(

0,
1− (p+ + a1)e

b1

1− η(p+ + a1)eb1

)
. (11)
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Proof. Let us fix η and α, which satisfy the condition (11). Define f for x < 0 as

f(t, x, x′) = f(t, 0, x′), (t, x, x′) ∈ I × (−∞, 0)× R.

Consider a solution of the Cauchy problem (4) for sufficiently small N = N1. It follows
from the conditions 3 and 4 that the graph of xN1 crosses the t-axis and decreases for t
such that xN1 < 0. Choose ε > 0 so that the inequalities

(p+ + a1 + εc1)e
b1+εd1 < 1, c1 = ‖c‖1, d1 = ‖d‖1,

α < (1− (p+ + a1 + εc1)e
b1+εc1)/(1− η(p+ + a1 + εc1)e

b1+εc1)
(12)

are satisfied. Using the condition 1 for a given ε find e(t) and choose N2 > 0 so that the
the inequalities

(p+ + a1 + εc1 + e1+q
N2

)eb1+εd1 < 1, e1 = ‖e‖1,

α < (1− (p+ + a1 + εc1 + e1+q
N2

)eb1+εc1)/(1− η(p+ + a1 + εc1 + e1+q
N2

)eb1+εc1) = αN2 .

are satisfied. We wish now to show that the boundary value problem

x′′ = f(t, x, x′), p(x(0)) + x′(0) = 0, x(1) = N2 (13)

is solvable. For this, let us consider the modified equation

x′′ = fLM(t, x, x′) := f(t, δ(−L, x, L), δ(−M,x′,M)), (14)

where L,M ∈ (0, +∞), together with the boundary conditions in (13). The function
δ(u, v, w) = u for v < u, δ = v for u ≤ v ≤ w, and δ = w for v > w. Notice that the
conditions 1 to 3 are satisfied also for fLM . Let N3 ∈ (N2, +∞) be such that

N3 −N3(p+ + a1 + εc1 +
e1 + q

N3

)eb1+ε > N2. (15)

Lemma 1 applied to the problem

x′′ = fLM(t, x, x′), x(0) = N3, x′(0) = −p (N3) (16)

yields the estimate for the solution

xLMN3(1) ≥ Nm − (Nmp+ + Nma1 + Nmεc1 + e1 + q)eb1+εd1

≥ N3 − (N3p+ + N3a1 + N3εc1 + e1 + q)eb1+εd1 > N2.
(17)

A set of solutions to the problem

x′′ = fLM(t, x, x′), x(0) = N, x′(0) = −p (N), N ∈ [N1, N3] (18)

is connected. Therefore there exist N0, N4 ∈ [N1, N3] and solutions xLMN0 , xLMN4 of the
problem (18), where N = N0 and N = N4 respectively such that xLMN0(1) = 0 and
xLMN4(1) = N2. Note that xLMN0 ≥ 0 and xLMN4 > 0. Lemma 1 implies the existence of
L1 > 0 such that for any solution xLMN of the Cauchy problem (8) from the estimate 0 ≤
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xLMN(1) ≤ N2 follows xLMN(1) ≤ L1. Let 0 ≤ xLMN(1) ≤ N2 hold. Then xMN = xL1MN

is a solution of the Cauchy problem

x′′ = fM(t, x, x′) := f(t, x, δ(−M, x′,M)), x(0) = N, x′(0) = −p(N). (19)

Let us show that there exists M∗ > 0 such that the estimate 0 ≤ xMN(1) ≤ N2 implies
|x′MN | < M∗. Suppose the contrary is true. Set M0 = max{|p(N)| : N ∈ [N1, N3]} and
let a sequence Mn ∈ (M0, +∞), n = 5, 6, . . . tend to +∞. Then there exists a sequence
of solutions xn = xMnNn and tn ∈ (0, 1] such that

0 ≤ xn(1) ≤ N2, |x′n(t)| < Mn, t ∈ [0, tn), |x′n(tn)| = Mn.

A subsequence exists which converges to a solution of the Cauchy problem (4), which
does not satisfy the condition 2. Thus the estimate |x′MN | < M∗ is valid. Therefore
xN0 = xM∗N0 , xN4 = xM∗N4 are solutions of the boundary value problem (4) for N = N0

and N = N4 respectively and satisfy the conditions xN0(1) = 0, xN4(1) = N2. Notice that
xN0(1)/xN0(η) = 0 and xN4(1)/xN4(η) ≥ αN2 > α by virtue of Lemma 1.

Let us made an extra assumption that solutions of the Cauchy problems (4) are defined
uniquely. Let N4 be a minimal value of N ∈ [N1, +∞) for which xN(1) = N2 and let N0

be a maximal value of N ∈ [N1, N4] for which xN0(1) = 0. A set of solutions of the Cauchy
problems (4) for N ∈ [N0, N4] is connected. Hence there exists Nα ∈ [N0, N4] such that
xNα(1)/xNα(η) = α. Evidently xNα solves the BVP (3). It follows from the condition 3
that xNα > 0.

The extra assumption above will now be eliminated by approximation arguments. We
do not assume now that solutions of the Cauchy problems (4) are defined uniquely. Let
t ∈ I be fixed. Consider the mesh

xni = iδ2−n, x′nj = jδ2−n, i, j = . . . ,−1, 0, 1, . . . , n = 1, 2, . . .

in the (x, x′)-plane. Let n be fixed. Substitute the function f(t, ·, ·) on the triangle
with vortices (xni, x

′
nj), (xni+1, x

′
nj) and (xni+1, x

′
nj+1) by a plane which coincides with

f(t, ·, ·) at these points. Similarly we approximate the function f on the triangle with
vortices (xni, x

′
nj), (xni, x

′
nj+1) and (xni+1, x

′
nj+1). Denote the approximating function by

fn(t, x, x′). The function fn satisfies the generalized Lipschitz condition and meets the
hypotheses 1 and 3. It follows from the above arguments that the boundary value problems

x′′ = fnLM(t, x, x′) = fn(t, δ(−L, x, L), δ(−M, x′M)),
p(x(0)) + x′(0) = 0, x(1) = αx(η)

have solutions xnLM such that 0 < xnLM(1) < N2 and 0 < xnLM(1) < L1. Hence the
function xnM = xnL1M solves the boundary value problem

x′′ = fnM(t, x, x′) = fn(t, x, δ(−M, x′M)),
p(x(0)) + x′(0) = 0, x(1) = αx(η).

If a constant M∗ > 0 exists such that the estimates |x′k| < M∗, k = 1, 2, . . . hold for
the sequence xk = xnkM∗ , k = 1, 2, . . . , then a subsequence can be extracted from the
sequence{xk}, which converges to a solution of the boundary value problem (3). Suppose
the contrary is true. Then as above one can find tk ∈ (0, 1] and a sequence of solutions
xk = xnkMk

such that |x′k(t)| < Mk, t ∈ [0, tk) and |x′k(tk)| = Mk. This sequence contains
a subsequence which converges to a solution of the Cauchy problem (4), which does not
meet the condition 2.
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Remark 2. It follows from the proofs of Lemma 1 and Theorem 1 that q may be a
function q : [0, +∞) → [0, +∞), satisfying the condition limx→+∞

q(x)
x

= 0.

The result below can be proved analogously to Theorem 1.

Theorem 2.2 If (p+ + a1)e
b1 < 1 and either a1 > 0 or a1 = 0, b1 > 0 and p+ > 0, then

there exists a positive solution to the problem (3) for

α ∈
(

0,
1− (p+ + a1)e

b1

1− η(p+ + a1)eb1

)
. (20)

Example 1. Consider the problem

x′′ = fσ(t, x, x′), p+x(0) + σ + x′(0) = 0, x(1) = αx(η), (21)

where σ ∈ (0, 1/3) and

fσ(t, x, x′) = −a1σ
−1x, (t, x, x′) ∈ [0, σ)× [0, +∞)×R,

fσ(t, x, x′) = min{0, b1σ
−1x′}, (t, x, x′) ∈ [σ, 2σ)× [0, +∞)×R,

fσ(t, x, x′) = −1, (t, x, x′) ∈ [2σ, 1]× [0, +∞)×R.

In case of (p+ + a1)e
b1 < 1 the BVP (21) shows that the conditions (11) and (20) are

sharp for fixed η and sufficiently small σ.
If (p+ + a1)e

b1 = 1 and a1 = b1 = 0, then the BVP (21) has not a solution.
If (p+ + a1)e

b1 = 1 and a1 + b1 > 0, then the BVP (21) has a positive solution only for
α ∈ (0, ασ), ασ > 0 and limσ→0 ασ = 0.

If (p+ + a1)e
b1 > 1, then the BVP (21) has not a solution for sufficiently small σ.
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À. Ëåïèí, Ô. Ñàäûðáàåâ. Ïîëîæèòåëüíûå ðåøåíèÿ òðåõòî÷å÷íîé êðàåâîé
çàäà÷è.

Àííîòàöèÿ. Óêàçàíû óñëîâèÿ ñóùåñòâîâàíèÿ ïîëîæèòåëüíîãî ðåøåíèÿ êðàåâîé
çàäà÷è x′′ = f(t, x, x′), p x(0) + x′(0) = 0, x(1) = αx(η).

ÓÄÊ 517.927

A. Lepins, F. Sadirbajevs. Par vienu trispunktu robez̆problēmu.
Anotācija. Tiek doti pozit̄ıva atrisinājuma eksistences nosac̄ıjumi robežproblēmai

x′′ = f(t, x, x′), p x(0) + x′(0) = 0, x(1) = αx(η).
.
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