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Positive solutions for three-point boundary value
problems

A. Lepin and F. Sadyrbaev

Summary. We provide the conditions for existence of positive solutions for the bound-
ary value problem 2" = f(t,z,2"), px(0)+2'(0) =0, z(1) = ax(n).
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1 Introduction

In the work [I] the conditions for existence of a positive solution to the boundary value
problem

" +gt)f(z,2") =0, 2'(0)=0, z(1) = ax(n), a,ne(0,1) (1)

were obtained. Moreover, solvability of the problem
2 =g(t,x, ")+ h(t,z,2"), tel:=]|0,1], @)
<0,

pz(0)+2'(0) =0, =z(1)=az(n), « 0<n<l1

has been proved under the assumptions

x/g(t7m7 :L‘/) S 07
\h(t,z,2")| < a(t)|x] + b(t)|2'] +u(t)|z]” +v(t)|2|F +e(t), 0<r k<1,
(Ipl +a)e <1, ar = |lally = [, |a(t)|dt, b= ||b]],.

Similar boundary value problems were considered in the works [2] - [11].

Our purpose in this paper is twofold. First, we prove the existence of a positive solution
for more general problem than the problem (1). Second, we will show that the problem
(2) is solvable also if (p; + a1)e” < 1, where p, = max{0,p}. Examples show that these
conditions cannot be improved.
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2 Existence of positive solutions

Consider the problem

= f(t,z,2"), pzx(0)+2'(0)=0, z(1) = ax(n), 3)
p € C([0,+0),R), «a,n € (0,1).

where f: I x[0,+00) x R — R satisfies the Carathéodory conditions, that is, (i) f(-,z,y)
is measurable in [ for fixed z,y € R; (ii) f(t,-,-) is continuous in R? for a.e. t € I;
(iii) for any compact set P C R? there exists a function g € L;(I,R) such that for any
(t,z,y) € I x P the inequality |f (¢, z,y)| < g(t) holds.

Suppose that the following conditions hold:
(1) There exist functions a,b,c,d € Ly(1,]0,4+00)) such that for any ¢ > 0 and some
e € Ly(1,]0,400)) the relation

ft,z,a") > —(a(t) +ec(t))r + (b(t) + ed(t))x’ — e(t),
(t,z,2") € I x [0,+00) x (—00,0];

(2) For any 7 € (0, 1] boundedness of a solution zy : [0,7) — R to the Cauchy problem
o = f(ta,a?), 2(0) = N, #(0) = —p(N), N >0 ()

implies boundedness of the derivative 'y (t);
(3) There exists 0 > 0 such that

o) =max{f(t,z,2") : 0<x <0, =0 <2’ <6} <0, tel, ||fli>0;

(4) p(0) = 0;
(5) There exist py,q € [0,+00) such that p(z) < p,z+¢q, © > 0.

Remark: The condition 2 holds if for (¢, z,2") € I x [0, +00) x [0, —00)
Pt ,2) < (alt) + ect)z + ((t) + ed(t))a’ + ().
Lemma 2.1 Let A,B,E € Ly(1,[0,+00)), N >0 and
f(t,x, ') > —A(t)x + B(t)x' — E(t), (t,z,2") €I x[0,+00) x (—00,0].
If the condition

Ei+q

(ps + A1+ ——)e™ <1

holds, where Ay = ||A|l1, By = ||Bl|1, E1 = ||E||1, then a solution xy : I — [0,+00) to
the Cauchy problem

" = f(t,x,2'), x(0)=N, 2/(0) = —p(N)
satisfies the estimates
2y = —(Nmpy + NAy + Ey + q)e™, (5)
2n(1) = Nop = (Nmpy + NAy + By + q)e”, (6)
an(1) 1= (et A+ St)et
an(m) T 1—nlps + A+ BE0)eB
where N, = max{zy(t): t € I}.
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Proof. Consider the case 2%y < 0. Then N,,, = N,
oy = ft,zn, 2y) > —A(t)zy + B(t)zly — E(t) > B(t)zy — A(t)N — E(t)
and 2\ (0) = —p(N) > —p;4 N — q. Let yn be a solution to the Cauchy problem

y =Bty — AN - E(t), y(0) =—p+N —q. (8)

Comparison theorems for the first order differential inequalities imply that z/y > yn. A
solution to the Cauchy problem (8) has the form

un(t) =~ + q)exp (fy Bs)ds)

9
~Jy (AN + B(s)) exp (! BLE) de) ds. ©)

It follows from (9) that
oy = yn = —(py N + g+ NA + Ey)e”. (10)

Consider the case y < N. Let T'= {t € (0,1) : 2/\y(t) < 0}. It is clear that T is an open
set which can be represented as a union of disjointed open intervals. Denote a sample
interval (t1,%3). In case of t; = 0 the estimate 2y (t) > yn(t), t € [t1,12] can be obtained
as above. If t; > 0, then 2y (t;) = 0 and the estimate z/\(t) > yn(t), t € [t1,t2] can be
obtained also. The inequality a'y(t) > yn(t) is evident if 2/ (¢) > 0. Now (10) implies (5)
which, in turn, implies (6).

Consider the case N,, > N. As before one obtains the relations

zy > —(Np A + El)eBl > —(Nmp+ + Np Ay + By + Q>€Bla

IN(D > Ny, — (1 - T)(NmAl + El)eBl > Ny — (Nmp+ + N Ay + Eq + 9)6317

where N,,, = zx(7). The estimate (7)) follows from

I’N(l) S ZL’N(l)
tn() = 2w () + (L= 1) (Noups + N Ay + By + q)ePs

(1 = 1) (Nmps + N Ay + Ey + q)eP
rn(1) 4+ (1 = 1) (Npps + Ny Ay + By + q)eB

(1 =) (Nmps + NpAr + By + q)eP?

v

1 —

Ny = (Nipy + NpyAy + By + q)ePr + (1 = 1) (Nipy + N Ay + By + q)eB

1= (py + Ay + BE9)e
L= (py + Ay + BE0)elr

Theorem 2.1 If (pi +a1)e® < 1, then there exists a positive solution to the problem (3)

for
1— by
oe (o 1o petajer ) (11)
L —n(ps + ar)en
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Proof. Let us fix  and «, which satisfy the condition (11). Define f for x < 0 as
ft,x, 2"y = f(t,0,2"), (t,x,2') €I x (—00,0) x R.

Consider a solution of the Cauchy problem (4) for sufficiently small N = Nj. It follows
from the conditions 3 and 4 that the graph of xy, crosses the t-axis and decreases for ¢
such that xy, < 0. Choose ¢ > 0 so that the inequalities

(P4 + a1 +ecr)e e <1 ¢ = |||y, di = ||d||x,

o < (1= (ps +ar + ) =) (1 — q(ps +ar +eer)eh =) (12)

are satisfied. Using the condition 1 for a given ¢ find e(t) and choose Ny > 0 so that the

the inequalities

(p+ +a; +ecp + %)eblﬂsdl <1l, e = “6”1,
a < (1= (py + a1 +ecr + G =) /(1 = n(py + a1 +ec1 + %)eblﬁcl) = ay,.

are satisfied. We wish now to show that the boundary value problem
2" = f(t,z,2'), p(x(0))+2'(0)=0, (1) = N, (13)
is solvable. For this, let us consider the modified equation
2" = fru(t,x,2') = f(t,0(—L,z,L),0(—=M,z', M)), (14)

where L, M € (0,400), together with the boundary conditions in (13). The function
d(u,v,w) = u for v < u, d = v for u < v < w, and § = w for v > w. Notice that the
conditions 1 to 3 are satisfied also for fry. Let N3 € (Na, +00) be such that

e1+
Ny — Ny(py + a1 + ec1 + 1Tq)eb1+6 > N, (15)
3
Lemma 1 applied to the problem
2 = fru(t,x,2’), x(0) = N3, 2/(0) = —p(N3) (16)

yields the estimate for the solution

Trmns (1) > Ny — (Npps + Nppay + Nppeer + e + q)€b1+5dl

> N3 — (N3py + Nsa; + Nsecy + e + q)e 54 > N, (17)
A set of solutions to the problem
a" = fom(t,z,2'), x(0) =N, 2'(0) = —p(N), N €[Ny, N3] (18)

is connected. Therefore there exist Ny, Ny € [Ny, N3] and solutions zpyn,, Zramn, of the
problem (18), where N = Ny and N = N, respectively such that xyn, (1) = 0 and
xryvn, (1) = No. Note that zpyn, > 0 and xppn, > 0. Lemma 1 implies the existence of
Ly > 0 such that for any solution zn of the Cauchy problem (8)) from the estimate 0 <
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xLMN(l) S NQ follows :ULMN(l) S Ll- Let 0 S xLMN(l) S NQ hold. Then TMN = L[1MN
is a solution of the Cauchy problem

2 = fy(t,x,2') = f(t,x,0(—M,2', M)), x(0)=N, 2'(0)=—p(N). (19)

Let us show that there exists M, > 0 such that the estimate 0 < 2,5 (1) < Ny implies
|2y x| < M,. Suppose the contrary is true. Set My = max{|p(N)|: N € [Ny, N3]} and
let a sequence M, € (My,+0o0), n = 5,06,... tend to +00. Then there exists a sequence
of solutions z,, = x, N, and t,, € (0,1] such that

0<z,(1) < Ny, |2, (t)] < My, t €1[0,t,), |2l(ts)] = M,.

A subsequence exists which converges to a solution of the Cauchy problem (4), which
does not satisfy the condition 2. Thus the estimate |z/,y| < M, is valid. Therefore
TNy = TM.Nos TN, = Ta, N, are solutions of the boundary value problem (4) for N = N
and N = N, respectively and satisfy the conditions zn,(1) = 0, zx,(1) = Ns. Notice that
zn,(1)/zNn,(n) = 0 and zn, (1) /2N, (n) > an, > a by virtue of Lemma 1.

Let us made an extra assumption that solutions of the Cauchy problems (4)) are defined
uniquely. Let Ny be a minimal value of N € [Ny, 400) for which zy(1) = N2 and let Ny
be a maximal value of N € [Ny, N,] for which zy,(1) = 0. A set of solutions of the Cauchy
problems (4) for N € [Ny, N4 is connected. Hence there exists N, € [Ny, Ny] such that
zn,(1)/zn,(n) = a. Evidently xy, solves the BVP (3). It follows from the condition 3
that zn, > 0.

The extra assumption above will now be eliminated by approximation arguments. We
do not assume now that solutions of the Cauchy problems (4) are defined uniquely. Let
t € I be fixed. Consider the mesh

Tpi = 1027 ", :U;j:j52_", ,7=...,—1,0,1,..., n=12 ...

in the (x,z’)-plane. Let n be fixed. Substitute the function f(t,-,-) on the triangle
with vortices (7,4, 27,;), (Tnit1,2,,;) and (Tpip1,2,,;,,) by a plane which coincides with
f(t,-,-) at these points. Similarly we approximate the function f on the triangle with
vortices (Tni; ), (Tnis Thj0q) and (Tpigr, 7,5, ). Denote the approximating function by
fa(t,x,2"). The function f, satisfies the generalized Lipschitz condition and meets the
hypotheses 1 and 3. It follows from the above arguments that the boundary value problems

2" = form(t,z,2") = fo(t,6(—L,z, L), 6(—M, 2’ M)),
p(z(0)) +2'(0) = 0, z(1) = az(n)

have solutions x,zy such that 0 < x,p(1) < Ny and 0 < x,z0(1) < L;. Hence the
function x,5; = .1, m solves the boundary value problem

2 = fau(t,x,2") = fu(t,x,6(—M, 2’ M)),

p(z(0)) +2(0) = 0, (1) = ax(n).
If a constant M, > 0 exists such that the estimates |z}| < M., k = 1,2,... hold for
the sequence xy = xp, ., Kk = 1,2,..., then a subsequence can be extracted from the
sequence{zy }, which converges to a solution of the boundary value problem (3)). Suppose
the contrary is true. Then as above one can find ¢, € (0, 1] and a sequence of solutions
T = T, ur, such that |z} (6)] < My, t€0,t) and |z} (tx)| = Mj. This sequence contains
a subsequence which converges to a solution of the Cauchy problem (4), which does not
meet the condition 2.
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Remark 2. 1t follows from the proofs of Lemma 1 and Theorem 1 that ¢ may be a
function ¢ : [0, +00) — [0, +00), satisfying the condition lim,_, @ =0.

The result below can be proved analogously to Theorem 1.

Theorem 2.2 If (p, +ay)e” < 1 and either a; >0 or a; =0, by > 0 and p, > 0, then
there exists a positive solution to the problem (3) for

1 b
ac (0, (ps +ar)e ) . (20)
1 —n(p+ + ar)eh

Example 1. Consider the problem
o’ = folt,x,2'), pix(0) +0+2(0) =0, (1) = azx(n), (21)
where ¢ € (0,1/3) and

fo(t,z,2') = —ay0 'z, (t,x,2") €[0,0) X [0,4+00) X R,
fo(t,z,2') = min{0,b;0 72},  (t,2,2') € [0,20) X [0,4+00) X R,
fo(t,x, ") = =1, (t,z,2") € [20,1] x [0, +00) X R.

In case of (py + a1)e” < 1 the BVP (21) shows that the conditions (11) and (20) are
sharp for fixed n and sufficiently small o.

If (py +ay)e” =1 and a; = b; = 0, then the BVP (21) has not a solution.

If (py +ay)e? =1 and a; +b; > 0, then the BVP (21) has a positive solution only for
a € (0,04), ap > 0 and lim,_ 9 a, = 0.

If (py + ap)e” > 1, then the BVP (21) has not a solution for sufficiently small o.
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A. Jlenun, ®. Cagpipbaesn. Iloso>kuTenpHbIe PENIEHNT TPEXTOUYEYHOM KpaeBoii
3aa49M.

AnHOTaUA. YKa3aHbl YCAOBUS CYIIECTBOBAHUS MOJIOKUTETHHOIO PENIeHUs KPAeBOM
samaun " = f(t,x,2"), px(0)+2'(0) =0, x(1) = azx(n).

YIK 517.927

A. Lepins, F. Sadirbajevs. Par vienu trispunktu robezproblemu.
Anotacija. Tiek doti pozitiva atrisinajuma eksistences nosacijumi robezproblemai
2 = f(t,z,2'), px(0)+2(0) =0, z(1) = az(n).
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