Positive solutions for three-point boundary value problems

A. Lepin and F. Sadyrbaev

Summary. We provide the conditions for existence of positive solutions for the boundary value problem x'' = f(t, x, x'), p x(0) + x'(0) = 0, $x(1) = \alpha x(\eta)$.

Key words: boundary value problems, positive solutions AMS Subject Classification: 34 B 15

1 Introduction

In the work [1] the conditions for existence of a positive solution to the boundary value problem

$$x'' + g(t)f(x, x') = 0, \quad x'(0) = 0, \ x(1) = \alpha x(\eta), \quad \alpha, \eta \in (0, 1)$$
(1)

were obtained. Moreover, solvability of the problem

$$\begin{aligned} x'' &= g(t, x, x') + h(t, x, x'), \quad t \in I := [0, 1], \\ px(0) + x'(0) &= 0, \quad x(1) = \alpha x(\eta), \quad \alpha \le 0, \ 0 < \eta < 1 \end{aligned}$$
(2)

has been proved under the assumptions

$$\begin{aligned} & x'g(t,x,x') \leq 0, \\ & |h(t,x,x')| \leq a(t)|x| + b(t)|x'| + u(t)|x|^r + v(t)|x'|^k + e(t), \quad 0 \leq r, k < 1, \\ & (|p| + a_1)e^{b_1} < 1, \quad a_1 = ||a||_1 = \int_0^1 |a(t)| \, dt, \quad b_1 = ||b||_1. \end{aligned}$$

Similar boundary value problems were considered in the works [2] - [11].

Our purpose in this paper is twofold. First, we prove the existence of a positive solution for more general problem than the problem (1). Second, we will show that the problem (2) is solvable also if $(p_+ + a_1)e^{b_1} < 1$, where $p_+ = \max\{0, p\}$. Examples show that these conditions cannot be improved.

2 Existence of positive solutions

Consider the problem

$$\begin{aligned} x'' &= f(t, x, x'), \quad px(0) + x'(0) = 0, \ x(1) = \alpha x(\eta), \\ p &\in C([0, +\infty), \mathbb{R}), \quad \alpha, \eta \in (0, 1). \end{aligned}$$
(3)

where $f: I \times [0, +\infty) \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory conditions, that is, (i) $f(\cdot, x, y)$ is measurable in I for fixed $x, y \in \mathbb{R}$; (ii) $f(t, \cdot, \cdot)$ is continuous in \mathbb{R}^2 for a.e. $t \in I$; (iii) for any compact set $P \subset \mathbb{R}^2$ there exists a function $g \in L_1(I, \mathbb{R})$ such that for any $(t, x, y) \in I \times P$ the inequality $|f(t, x, y)| \leq g(t)$ holds.

Suppose that the following conditions hold: (1) There exist functions $a, b, c, d \in L_1(I, [0, +\infty))$ such that for any $\varepsilon > 0$ and some $e \in L_1(I, [0, +\infty))$ the relation

$$\begin{split} f(t,x,x') &\geq -(a(t) + \varepsilon c(t))x + (b(t) + \varepsilon d(t))x' - e(t), \\ (t,x,x') &\in I \times [0,+\infty) \times (-\infty,0]; \end{split}$$

(2) For any $\tau \in (0,1]$ boundedness of a solution $x_N : [0,\tau) \to \mathbb{R}$ to the Cauchy problem

$$x'' = f(t, x, x'), \quad x(0) = N, \ x'(0) = -p(N), \ N > 0$$
(4)

implies boundedness of the derivative $x'_N(t)$;

(3) There exists $\delta > 0$ such that

$$f_*(t) = \max\{f(t, x, x') : 0 \le x \le \delta, -\delta \le x' \le \delta\} \le 0, \quad t \in I, \ \|f_*\|_1 > 0;$$

(4) $p(0) \ge 0;$

(5) There exist $p_+, q \in [0, +\infty)$ such that $p(x) \le p_+ x + q, x \ge 0$.

Remark: The condition 2 holds if for $(t, x, x') \in I \times [0, +\infty) \times [0, -\infty)$

$$f(t, x, x') \le (a(t) + \varepsilon c(t))x + (b(t) + \varepsilon d(t))x' + e(t).$$

Lemma 2.1 Let $A, B, E \in L_1(I, [0, +\infty)), N > 0$ and

$$f(t, x, x') \ge -A(t)x + B(t)x' - E(t), \quad (t, x, x') \in I \times [0, +\infty) \times (-\infty, 0].$$

If the condition

$$(p_+ + A_1 + \frac{E_1 + q}{N})e^{B_1} < 1$$

holds, where $A_1 = ||A||_1$, $B_1 = ||B||_1$, $E_1 = ||E||_1$, then a solution $x_N : I \to [0, +\infty)$ to the Cauchy problem

$$x'' = f(t, x, x'), \quad x(0) = N, \ x'(0) = -p(N)$$

satisfies the estimates

$$x'_{N} \ge -(N_{m}p_{+} + N_{m}A_{1} + E_{1} + q)e^{B_{1}},$$
(5)

$$x_N(1) \ge N_m - (N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}, \tag{6}$$

$$\frac{x_N(1)}{x_N(\eta)} \ge \frac{1 - (p_+ + A_1 + \frac{E_1 + q}{N_m})e^{B_1}}{1 - \eta(p_+ + A_1 + \frac{E_1 + q}{N_m})e^{B_1}},\tag{7}$$

where $N_m = \max\{x_N(t) : t \in I\}.$

Proof. Consider the case $x'_N \leq 0$. Then $N_m = N$,

$$x_N'' = f(t, x_N, x_N') \ge -A(t)x_N + B(t)x_N' - E(t) \ge B(t)x_N' - A(t)N - E(t)$$

and $x'_N(0) = -p(N) \ge -p_+N - q$. Let y_N be a solution to the Cauchy problem

$$y' = B(t)y - A(t)N - E(t), \quad y(0) = -p_+N - q.$$
(8)

Comparison theorems for the first order differential inequalities imply that $x'_N \ge y_N$. A solution to the Cauchy problem (8) has the form

$$y_{N}(t) = -(p_{+}N + q) \exp\left(\int_{0}^{t} B(s) \, ds\right) -\int_{0}^{t} (A(s)N + E(s)) \exp\left(\int_{s}^{t} B(\xi) \, d\xi\right) \, ds.$$
(9)

It follows from (9) that

$$x'_{N} \ge y_{N} \ge -(p_{+}N + q + NA_{1} + E_{1})e^{B_{1}}.$$
(10)

Consider the case $x_N \leq N$. Let $T = \{t \in (0, 1) : x'_N(t) < 0\}$. It is clear that T is an open set which can be represented as a union of disjointed open intervals. Denote a sample interval (t_1, t_2) . In case of $t_1 = 0$ the estimate $x'_N(t) \geq y_N(t)$, $t \in [t_1, t_2]$ can be obtained as above. If $t_1 > 0$, then $x'_N(t_1) = 0$ and the estimate $x'_N(t) \geq y_N(t)$, $t \in [t_1, t_2]$ can be obtained also. The inequality $x'_N(t) \geq y_N(t)$ is evident if $x'_n(t) \geq 0$. Now (10) implies (5) which, in turn, implies (6).

Consider the case $N_m > N$. As before one obtains the relations

$$x'_N \ge -(N_m A_1 + E_1)e^{B_1} \ge -(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1},$$

$$x_N(1) \ge N_m - (1 - \tau)(N_m A_1 + E_1)e^{B_1} \ge N_m - (N_m p_+ + N_m A_1 + E_1 + q)e^{B_1},$$

where $N_m = x_N(\tau)$. The estimate (7) follows from

$$\begin{aligned} \frac{x_N(1)}{x_N(\eta)} &\geq \frac{x_N(1)}{x_N(1) + (1 - \eta)(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}} \\ &= 1 - \frac{(1 - \eta)(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}}{x_N(1) + (1 - \eta)(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}} \\ &\geq 1 - \frac{(1 - \eta)(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}}{N_m - (N_m p_+ + N_m A_1 + E_1 + q)e^{B_1} + (1 - \eta)(N_m p_+ + N_m A_1 + E_1 + q)e^{B_1}} \\ &= \frac{1 - (p_+ + A_1 + \frac{E_1 + q}{N_m})e^{B_1}}{1 - \eta(p_+ + A_1 + \frac{E_1 + q}{N_m})e^{B_1}}. \end{aligned}$$

Theorem 2.1 If $(p_+ + a_1)e^{b_1} < 1$, then there exists a positive solution to the problem (3) for

$$\alpha \in \left(0, \frac{1 - (p_+ + a_1)e^{b_1}}{1 - \eta(p_+ + a_1)e^{b_1}}\right).$$
(11)

Proof. Let us fix η and α , which satisfy the condition (11). Define f for x < 0 as

$$f(t, x, x') = f(t, 0, x'), \quad (t, x, x') \in I \times (-\infty, 0) \times \mathbb{R}.$$

Consider a solution of the Cauchy problem (4) for sufficiently small $N = N_1$. It follows from the conditions 3 and 4 that the graph of x_{N_1} crosses the t-axis and decreases for t such that $x_{N_1} < 0$. Choose $\varepsilon > 0$ so that the inequalities

$$(p_{+} + a_{1} + \varepsilon c_{1})e^{b_{1} + \varepsilon d_{1}} < 1, \quad c_{1} = ||c||_{1}, \quad d_{1} = ||d||_{1}, \alpha < (1 - (p_{+} + a_{1} + \varepsilon c_{1})e^{b_{1} + \varepsilon c_{1}})/(1 - \eta(p_{+} + a_{1} + \varepsilon c_{1})e^{b_{1} + \varepsilon c_{1}})$$

$$(12)$$

are satisfied. Using the condition 1 for a given ε find e(t) and choose $N_2 > 0$ so that the the inequalities

$$(p_{+} + a_{1} + \varepsilon c_{1} + \frac{e_{1} + q}{N_{2}})e^{b_{1} + \varepsilon d_{1}} < 1, \quad e_{1} = ||e||_{1}, \alpha < (1 - (p_{+} + a_{1} + \varepsilon c_{1} + \frac{e_{1} + q}{N_{2}})e^{b_{1} + \varepsilon c_{1}})/(1 - \eta(p_{+} + a_{1} + \varepsilon c_{1} + \frac{e_{1} + q}{N_{2}})e^{b_{1} + \varepsilon c_{1}}) = \alpha_{N_{2}}.$$

are satisfied. We wish now to show that the boundary value problem

$$x'' = f(t, x, x'), \quad p(x(0)) + x'(0) = 0, \ x(1) = N_2$$
(13)

is solvable. For this, let us consider the modified equation

$$x'' = f_{LM}(t, x, x') := f(t, \delta(-L, x, L), \delta(-M, x', M)),$$
(14)

where $L, M \in (0, +\infty)$, together with the boundary conditions in (13). The function $\delta(u, v, w) = u$ for v < u, $\delta = v$ for $u \leq v \leq w$, and $\delta = w$ for v > w. Notice that the conditions 1 to 3 are satisfied also for f_{LM} . Let $N_3 \in (N_2, +\infty)$ be such that

$$N_3 - N_3(p_+ + a_1 + \varepsilon c_1 + \frac{e_1 + q}{N_3})e^{b_1 + \varepsilon} > N_2.$$
(15)

Lemma 1 applied to the problem

$$x'' = f_{LM}(t, x, x'), \quad x(0) = N_3, \ x'(0) = -p(N_3)$$
(16)

yields the estimate for the solution

$$\begin{array}{ll} x_{LMN_3}(1) &\geq N_m - (N_m p_+ + N_m a_1 + N_m \varepsilon c_1 + e_1 + q) e^{b_1 + \varepsilon d_1} \\ &\geq N_3 - (N_3 p_+ + N_3 a_1 + N_3 \varepsilon c_1 + e_1 + q) e^{b_1 + \varepsilon d_1} > N_2. \end{array}$$
(17)

A set of solutions to the problem

$$x'' = f_{LM}(t, x, x'), \quad x(0) = N, \ x'(0) = -p(N), \quad N \in [N_1, N_3]$$
 (18)

is connected. Therefore there exist $N_0, N_4 \in [N_1, N_3]$ and solutions x_{LMN_0}, x_{LMN_4} of the problem (18), where $N = N_0$ and $N = N_4$ respectively such that $x_{LMN_0}(1) = 0$ and $x_{LMN_4}(1) = N_2$. Note that $x_{LMN_0} \ge 0$ and $x_{LMN_4} > 0$. Lemma 1 implies the existence of $L_1 > 0$ such that for any solution x_{LMN} of the Cauchy problem (8) from the estimate $0 \le 0$

 $x_{LMN}(1) \leq N_2$ follows $x_{LMN}(1) \leq L_1$. Let $0 \leq x_{LMN}(1) \leq N_2$ hold. Then $x_{MN} = x_{L_1MN}$ is a solution of the Cauchy problem

$$x'' = f_M(t, x, x') := f(t, x, \delta(-M, x', M)), \quad x(0) = N, \quad x'(0) = -p(N).$$
(19)

Let us show that there exists $M_* > 0$ such that the estimate $0 \le x_{MN}(1) \le N_2$ implies $|x'_{MN}| < M_*$. Suppose the contrary is true. Set $M_0 = \max\{|p(N)| : N \in [N_1, N_3]\}$ and let a sequence $M_n \in (M_0, +\infty), n = 5, 6, \ldots$ tend to $+\infty$. Then there exists a sequence of solutions $x_n = x_{M_nN_n}$ and $t_n \in (0, 1]$ such that

$$0 \le x_n(1) \le N_2$$
, $|x'_n(t)| < M_n$, $t \in [0, t_n)$, $|x'_n(t_n)| = M_n$

A subsequence exists which converges to a solution of the Cauchy problem (4), which does not satisfy the condition 2. Thus the estimate $|x'_{MN}| < M_*$ is valid. Therefore $x_{N_0} = x_{M_*N_0}, x_{N_4} = x_{M_*N_4}$ are solutions of the boundary value problem (4) for $N = N_0$ and $N = N_4$ respectively and satisfy the conditions $x_{N_0}(1) = 0, x_{N_4}(1) = N_2$. Notice that $x_{N_0}(1)/x_{N_0}(\eta) = 0$ and $x_{N_4}(1)/x_{N_4}(\eta) \ge \alpha_{N_2} > \alpha$ by virtue of Lemma 1.

Let us made an extra assumption that solutions of the Cauchy problems (4) are defined uniquely. Let N_4 be a minimal value of $N \in [N_1, +\infty)$ for which $x_N(1) = N_2$ and let N_0 be a maximal value of $N \in [N_1, N_4]$ for which $x_{N_0}(1) = 0$. A set of solutions of the Cauchy problems (4) for $N \in [N_0, N_4]$ is connected. Hence there exists $N_\alpha \in [N_0, N_4]$ such that $x_{N_\alpha}(1)/x_{N_\alpha}(\eta) = \alpha$. Evidently x_{N_α} solves the BVP (3). It follows from the condition 3 that $x_{N_\alpha} > 0$.

The extra assumption above will now be eliminated by approximation arguments. We do not assume now that solutions of the Cauchy problems (4) are defined uniquely. Let $t \in I$ be fixed. Consider the mesh

$$x_{ni} = i\delta 2^{-n}, \quad x'_{nj} = j\delta 2^{-n}, \quad i, j = \dots, -1, 0, 1, \dots, \quad n = 1, 2, \dots$$

in the (x, x')-plane. Let *n* be fixed. Substitute the function $f(t, \cdot, \cdot)$ on the triangle with vortices (x_{ni}, x'_{nj}) , (x_{ni+1}, x'_{nj}) and (x_{ni+1}, x'_{nj+1}) by a plane which coincides with $f(t, \cdot, \cdot)$ at these points. Similarly we approximate the function *f* on the triangle with vortices (x_{ni}, x'_{nj}) , (x_{ni}, x'_{nj+1}) and (x_{ni+1}, x'_{nj+1}) . Denote the approximating function by $f_n(t, x, x')$. The function f_n satisfies the generalized Lipschitz condition and meets the hypotheses 1 and 3. It follows from the above arguments that the boundary value problems

$$x'' = f_{nLM}(t, x, x') = f_n(t, \delta(-L, x, L), \delta(-M, x'M)),$$

$$p(x(0)) + x'(0) = 0, \ x(1) = \alpha x(\eta)$$

have solutions x_{nLM} such that $0 < x_{nLM}(1) < N_2$ and $0 < x_{nLM}(1) < L_1$. Hence the function $x_{nM} = x_{nL_1M}$ solves the boundary value problem

$$x'' = f_{nM}(t, x, x') = f_n(t, x, \delta(-M, x'M)),$$

$$p(x(0)) + x'(0) = 0, \ x(1) = \alpha x(\eta).$$

If a constant $M_* > 0$ exists such that the estimates $|x'_k| < M_*$, k = 1, 2, ... hold for the sequence $x_k = x_{n_k M_*}$, k = 1, 2, ..., then a subsequence can be extracted from the sequence $\{x_k\}$, which converges to a solution of the boundary value problem (3). Suppose the contrary is true. Then as above one can find $t_k \in (0, 1]$ and a sequence of solutions $x_k = x_{n_k M_k}$ such that $|x'_k(t)| < M_k$, $t \in [0, t_k)$ and $|x'_k(t_k)| = M_k$. This sequence contains a subsequence which converges to a solution of the Cauchy problem (4), which does not meet the condition 2. Remark 2. It follows from the proofs of Lemma 1 and Theorem 1 that q may be a function $q: [0, +\infty) \to [0, +\infty)$, satisfying the condition $\lim_{x\to+\infty} \frac{q(x)}{x} = 0$.

The result below can be proved analogously to Theorem 1.

Theorem 2.2 If $(p_+ + a_1)e^{b_1} < 1$ and either $a_1 > 0$ or $a_1 = 0$, $b_1 > 0$ and $p_+ > 0$, then there exists a positive solution to the problem (3) for

$$\alpha \in \left(0, \frac{1 - (p_+ + a_1)e^{b_1}}{1 - \eta(p_+ + a_1)e^{b_1}}\right).$$
(20)

Example 1. Consider the problem

$$x'' = f_{\sigma}(t, x, x'), \quad p_{+}x(0) + \sigma + x'(0) = 0, \quad x(1) = \alpha x(\eta), \tag{21}$$

where $\sigma \in (0, 1/3)$ and

$$f_{\sigma}(t, x, x') = -a_1 \sigma^{-1} x, \quad (t, x, x') \in [0, \sigma) \times [0, +\infty) \times R, f_{\sigma}(t, x, x') = \min\{0, b_1 \sigma^{-1} x'\}, \quad (t, x, x') \in [\sigma, 2\sigma) \times [0, +\infty) \times R, f_{\sigma}(t, x, x') = -1, \quad (t, x, x') \in [2\sigma, 1] \times [0, +\infty) \times R.$$

In case of $(p_+ + a_1)e^{b_1} < 1$ the BVP (21) shows that the conditions (11) and (20) are sharp for fixed η and sufficiently small σ .

If $(p_+ + a_1)e^{b_1} = 1$ and $a_1 = b_1 = 0$, then the BVP (21) has not a solution.

If $(p_+ + a_1)e^{b_1} = 1$ and $a_1 + b_1 > 0$, then the BVP (21) has a positive solution only for $\alpha \in (0, \alpha_{\sigma}), \alpha_{\sigma} > 0$ and $\lim_{\sigma \to 0} \alpha_{\sigma} = 0$.

If $(p_+ + a_1)e^{b_1} > 1$, then the BVP (21) has not a solution for sufficiently small σ .

References

- [1] W. Feng, Solutions and positive solutions for some three-point boundary value problems. Dynamical systems and differential equations, AIMS, 2003, 263 272.
- [2] W. Feng, J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl., 212 (1997), 467 - 480.
- [3] W. Feng, J.R.L. Webb, Solvability of three-point boundary value problems at resonance. Nonlinear Anal. TMA 30 (1997), 3227 - 3238.
- [4] C.R. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl., 168 (1992), 540 - 551.
- [5] C.R. Gupta, A note on a second order three-point boundary value problem. J. Math. Anal. Appl., 186 (1994), 277 - 281.
- [6] C.R. Gupta, A second order m-point boundary value problem at resonance. Nonlinear Anal. TMA 24 (1995), 1483 - 1489.
- [7] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, On an m-point boundary-value for second-order differential equations. Nonlinear Anal. TMA 23 (1994), 1427 - 1436.

- [8] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, Solvability of m-point boundary value problem for second order ordinary differential equations. J. Math. Anal. Appl., 189 (1995), 575 - 584.
- [9] A.Ja. Lepin. On three-point boundary value problems. This volume, 94 103.
- [10] R. Ma, Existence theorems for a second order three-point boundary value problem.
 J. Math. Anal. Appl., 212 (1997), 430 442.
- [11] J.R.L. Webb, Positive solutions of some three point boundary value problems via fixed point theory. Nonlinear Anal., 46 (2001), 4319 4332.

А. Лепин, Ф. Садырбаев. Положительные решения трехточечной краевой задачи.

Аннотация. Указаны условия существования положительного решения краевой задачи $x'' = f(t, x, x'), \ p x(0) + x'(0) = 0, \ x(1) = \alpha x(\eta).$ УДК 517.927

A. Lepins, F. Sadirbajevs. Par vienu trispunktu robežproblēmu.

Anotācija. Tiek doti pozitīva atrisinājuma eksistences nosacījumi robežproblēmai $x'' = f(t, x, x'), p x(0) + x'(0) = 0, x(1) = \alpha x(\eta).$

Institute of Mathematics and Computer Science, University of Latvia Riga, Rainis blvd 29 Received 04.02.2008